Background: Trichoderma species, known as biocontrol agents against plant diseases, contain diverse compounds, especially terpenoids, with various bioactivities. To facilitate the exploration of bioactive secondary metabolites of Trichoderma harzianum NTU2180, the OSMAC approach MS/MS molecular networking was applied in the current study.
Results: The feature-based molecular networking (FBMN) analysis showed that T. harzianum NTU2180 fermented on germinated brown rice (GBR) produced more terpenoids. Here, two new acorane-sesequiterpenes, trichospirols A (1) and B (2), and 12 known compounds (3 - 14) were isolated from the EtOAc layer of T. harzianum NTU2180 fermentation on GBR. Structures of these compounds were determined through NMR, UV, IR, and MS analyses. The absolute configuration of trichospirols A (1) was also elucidated by x-ray with Cu K-α radiation. Among them, six compounds (1, 2, 3, 4, 5, and 11) were annotated as terpenoids by the NPClassifier on FBMN. 5-Hydroxy-3-hydroxmethyl-2-methyl-7-methoxychromone (7) and ergosterol peroxide (11) showed significant anti-angiogenic activity in ex vivo experiments with respective 0.57 ± 0.12- and 0.20 ± 0.12-fold changes. In addition, compound 11 displayed cytotoxicity against Y79 retinoblastoma cells with IC50 value of 35.3 ± 6.9 µM.
Conclusions: The current study utilizes FBMN concept with OSMAC approach to accelerate the exploration of potential metabolites of the fungus Trichoderma harzianum NTU2180. Through a series of FBMN-guided isolation and purification, two new acorane-sesequiterpenes and 12 known compounds were obtained. The ex vivo and in vitro experiments were evaluated to assess anticancer isolates. It is worth noting that compound 11 was identified as a dual inhibitor targeting both angiogenesis and proliferation of retinoblastomas. Altogether, the results revealed the novel potential of T. harzianum for developing natural therapeutics against retinoblastomas.
Keywords: Ex vivo anti-angiogenic activity; Trichoderma harzianum NTU2180; Feature-based molecular networking (FBMN); OSMAC approach; Retinoblastoma; Triterpenoid.
© 2024. The Author(s).