The amidases (EC 3.5.1.4) are versatile hydrolase biocatalysts that have been the attention of academia and industries for stereo-selective synthesis and bioremediation. These are categorized based on the amino acid sequence and substrate specificity. Notably, the Signature amidase family is distinguished by a characteristic signature sequence, GGSS(S/G)GS, which encompasses highly conserved Ser-Ser-Lys catalytic residues, and the amidases belonging to this family typically demonstrate a broad substrate spectrum activity. The amidases classified within the nitrilase superfamily possess distinct Glu-Lys-Cys catalytic residues and exhibit activity towards small aliphatic substrates. Recent discoveries have underscored the potential role of amidases in the degradation of toxic amides present in polymers, insecticides, and food products. This expands the horizons for amidase-mediated biodegradation of amide-laden pollutants and fosters sustainable development alongside organic synthesis. The burgeoning global production facilities are expected to drive a heightened demand for this enzyme, attributable to its promising chemo-, regio-, and enantioselective hydrolysis capabilities for a variety of amides. Advances in protein engineering have enhanced the catalytic efficiency, structural stability, and substrate selectivity of amidases. Concurrently, the heterologous expression of amidase genes sourced from thermophiles has facilitated the development of highly stable amidases with significant industrial relevance. Beyond their biotransformation capabilities concerning amides, through amido-hydrolase and acyltransferase activities, recent investigations have illuminated the potential of amidase-mediated degradation of amide-containing pollutants in soil and aquatic environments. This review offers a comprehensive overview of recent advancements pertaining to microbial amidases (EC 3.5.1.4), focusing on aspects such as their distribution, gene mining methodologies, enzyme stability, protein engineering, reusability, and biocatalytic efficacy in organic synthesis and biodegradation.
Keywords: Acyltransferase; Amidase; Amides; Hydrolase; Immobilization; Protein engineering.
© 2024 The Authors.