Unraveling the mechanisms underlying the fluorescent probe detection of microcystin-LR and its binding with CT-DNA

Int J Biol Macromol. 2025 Jan 13:139873. doi: 10.1016/j.ijbiomac.2025.139873. Online ahead of print.

Abstract

Cyanobacteria blooms are concerning due to algal toxins like microcystin-leucine arginine (MC-LR). Despite progress in detecting MC-LR and understanding its toxic effects, including calf thymus DNA (CT-DNA) damage, the mechanisms for fluorescent probe detection of MC-LR and its binding to CT-DNA are poorly understood. In this study, we designed three fluorescent probes for MC-LR detection. Probe 1, with an acidic recognition site, is effective but influenced by solution pH. Probe 2, featuring a benzene ring structure, shows stable detection regardless of pH. Probe 3 offers the best performance, combining a long-chain and benzene ring structure. This suggests that combining these structures is beneficial for MC-LR probe design. Using Probe 3, we observed a strong interaction between MC-LR and CT-DNA. UV absorption spectroscopy, circular dichroism (CD) spectra, and molecular docking techniques provided the first evidence of MC-LR binding to CT-DNA through intercalation, with a binding saturation value of 8.33, significantly impacting CT-DNA structure. This study introduces a novel strategy for designing fluorescent probes for MC-LR detection, along with new insights into the interactions between MC-LR and CT-DNA.

Keywords: CT-DNA; Fluorescent probe; Microcystin-LR.