We present a novel approach to realize three-dimensional (3D) matter wave solitons (MWSs) transformation between different optical potential wells by manipulating their depths and centers. The 3D MWSs are obtained by the square operator method, and transformed to other types (elliptical/ring/necklace) by performing time evolution with the split-step Fourier method. The effectiveness and reliability of our approach is demonstrated by comparing the transformed solitons with those obtained iteratively using the square operator method. Redistribution of MWSs are observed due to the modulation of potentials. In certain complex optical potential wells, we demonstrate the generation of exotic MWSs, such as double gyration modes, through this transformation approach. Overall, the controllable soliton transformation provides an excellent opportunity for all-optical switching, optical information processing, and various other applications.
© 2025. The Author(s).