Quantitative Assessment of Microbial Transmission onto Environmental Surfaces Using Thermoresponsive Gelatin Hydrogels as a Finger Mimetic under In Situ-Mimicking Conditions

Adv Healthc Mater. 2025 Jan 15:e2403790. doi: 10.1002/adhm.202403790. Online ahead of print.

Abstract

Surface-mediated transmission of pathogens plays a key role in healthcare-associated infections. However, proper techniques for its quantitative analysis are lacking, making it challenging to develop novel antimicrobial and anti-fouling surfaces to reduce pathogen spread via environmental surfaces. This study demonstrates a gelatin hydrogel-based touch transfer test, the HydroTouch test, to evaluate pathogen transmission on high-touch surfaces under semi-dry conditions. The HydroTouch test employs gelatin as a finger mimetic, facilitating testing with pathogenic bacteria under controlled conditions. The thermoresponsive sol-gel transition of gelatin allows easy recovery and quantification of bacteria before and after testing. The HydroTouch test demonstrates that methicillin-resistant Staphylococcus aureus has a high transmission efficiency of ≈16% onto stainless steel, compared to <3% for Escherichia coli or Pseudomonas aeruginosa. Polyurethane surfaces exhibit strong resistance to bacterial contamination with a transmission efficiency of ≈0.6%, while polytetrafluoroethylene shows a transmission efficiency approximately four times higher than polyurethane. Additionally, quaternary ammonium-based antimicrobial coatings reduce the transmission efficiency of live bacteria on stainless steel to ≈4% of the original level. The HydroTouch test provides a reliable method for assessing pathogen transmission on various surfaces under semi-dry settings, supporting the development of effective antimicrobial, anti-transmission coatings to reduce healthcare-associated infections.

Keywords: antimicrobial testing; high‐touch surfaces; real‐life conditions; thermoresponsive hydrogels; touch transfer assay.