All-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr3 microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs). The VCSEL demonstrated single-mode lasing at 542 nm, a low threshold of 5 µJ/cm2, and a high Q-factor of 2893. Additionally, time-resolved photoluminescence (TRPL) measurements using a streak camera revealed picosecond-scale lasing dynamics. This study offers a novel, to the best of our knowledge, approach for realizing laser devices using perovskite single-crystal microplatelets.