Mechanical and thermal responsive chiral photonic cellulose hydrogels for dynamic anti-counterfeiting and optical skin

Mater Horiz. 2025 Jan 16. doi: 10.1039/d4mh01646g. Online ahead of print.

Abstract

Dynamic responsive structural colored materials have drawn increased consideration in a wide range of applications, such as colorimetric sensors and high-safety tags. However, the sophisticated interactions among the individual responsive parts restrict the advanced design of multimodal responsive photonic materials. Inspired by stimuli-responsive color change in chameleon skin, a simple and effective photo-crosslinking strategy is proposed to construct hydroxypropyl cellulose (HPC) based hydrogels with multiple responsive structured colors. By controlling UV exposure time, the structural color of HPC hydrogels can be effectively controlled in a full-color spectrum. At the same time, HPC hydrogels showcase temperature and mechanical dual-responsive structural colors. In particular, the microstructure of HPC hydrogels undergoes a transition from the chiral nematic phase to the nematic phase under the action of external stretching, leading to a significant reflection of circularly polarized light (CPL) to linearly polarized light (LPL). Given the diverse responsiveness exhibited by HPC hydrogels and their unique structural transition properties under external forces, we have explored their potential applications as dynamic anti-counterfeiting labels and optical skins. This work reveals the great possibility of using structural colored cellulose hydrogels in multi-sensing and optical displays, opening up a new path for the exploration of next-generation flexible photonic devices.