Maternal diabetes significantly induces embryonic neural tube defects (NTDs). Thus, it is urgent need to further investigate the regulatory mechanism and therapeutic strategy for maternal diabetes-induced embryonic NTDs. Pyroptosis is a novel mode of programmed cell death. The role of pyroptosis on the maternal diabetes-induced embryonic NTDs is still unclear. Chitosan oligosaccharides (COSs) is a kind of natural polysaccharide with anti-inflammatory and anti-oxidant bioactivities, and its role on NTDs formation is poorly understood. Here, we hypothesized that excessive pyroptosis is another important mechanism for diabetes-induced NTDs formation, and COSs can exert its anti-inflammatory and antioxidant activities to alleviate maternal diabetes-mediated embryonic neuroepithelial cells pyroptosis and NTDs formation. Firstly, we confirmed that maternal diabetes significantly induces the embryonic NTDs formation (13.2% of NTDs rate). More interestingly, the mechansim study found that maternal diabetes significantly triggers the elevated pyroptosis level in embryos. And VX765, a pyroptosis inhibitor, significantly ameliorated the diabetes-induced embryonic NTDs (1.9% NTDs). Additionally, COSs treatment significantly reduced the maternal diabetes-associated the embryonic NTDs formation with 2.6% NTDs rate. Mechanistic studies further demonstrated that COSs significantly inhibits maternal diabetes-induced elevated inflammatory response and oxidative stress in embryos, and subsequently ameliorates the pyroptotic level of embryonic neuroepithelial cells through inhibiting TXNIP-NLRP3 complex formation. In a conclusion, pyroptosis is a another key caused event for maternal diabetes-induced embryonic NTDs. COSs exerts its antioxidant effect to inhibit the pyroptosis of neuroepithelial cells and consequently alleviates maternal diabetes-induced embryonic NTDs.
Keywords: Chitosan oligosaccharides (COSs); Maternal diabetes; Neural tube defects (NTDs); Oxidative stress; Pyroptosis.
Copyright © 2025. Published by Elsevier B.V.