TiOx-Based Implantable Memristor for Biomedical Engineering

ACS Appl Mater Interfaces. 2025 Jan 17. doi: 10.1021/acsami.4c17297. Online ahead of print.

Abstract

Implantable memristors are considered an emerging electronic technology that can simulate brain memory function and demonstrate some promising applications in the biomedical field. However, it remains a critical challenge to enhance their long-term stability and biocompatibility in implantation environments. In this work, an implantable memristor has been successfully fabricated based on TiOx using magnetron sputtering. The device demonstrated excellent thermal stability and recoverability at elevated temperatures, providing important experimental evidence for its applications under high-temperature environments. More importantly, after long-term testing under biological mimicking environments, such as fresh pork and bullfrog tissues, the memristor maintained excellent bipolar resistive switching (RS) characteristics and stable memory performance, indicating its potential for use in medical fields. Further analysis revealed that the RS behaviors of the device are mainly controlled by space charge limited currents (SCLC), Ohmic conduction, and Schottky emission conduction mechanisms. Therefore, the long-term stability of the implantable memristor is validated under real biological environments, promoting the transition of implantable memristor from theory to practical applications and laying the foundation for further biomedical applications.

Keywords: artificial intelligence; biomedical engineering; implantable device; memristor; resistive switching.