Accurate oxygen detection and measurement of its concentration is vital in biological and industrial applications, necessitating highly sensitive and reliable sensors. Optical sensors, valued for their real-time monitoring, nondestructive analysis, and exceptional sensitivity, are particularly suited for precise oxygen measurements. Here, we report a dual-emissive iridium(III) complex, IrNPh2, featuring "aggregation-induced emission" (AIE) properties and used for sensitive oxygen sensing. IrNPh2 exhibits dual emissions at 450 and 515 nm, with 515 nm triplet-state emission demonstrating remarkable oxygen sensitivity due to its long-lived excited state (12.12 μs) and high quantum yield (68%). Stern-Volmer analysis reveals a notable quenching constant (Ksv = 12.44%-1) and an ultralow detection limit of 0.0397%, emphasizing its superior performance. The oxygen quenching mechanism is driven by electron transfer (ET), supported by computational studies showing the lowest-unoccupied molecular orbital (LUMO) alignment of IrNPh2 with the πg* orbitals of triplet oxygen, leading to superoxide radical (O2•-) formation. Electron paramagnetic resonance (EPR) studies further confirm this pathway. Biological evaluations using a three-dimensional (3D) U87-MG glioma spheroid model highlight the ability of IrNPh2 to detect hypoxic regions, with significant fluorescence enhancement under hypoxia and minimal cytotoxicity (>80% viability at 100 μM). With high sensitivity, low detection limits, and biocompatibility, IrNPh2 emerges as a promising candidate for oxygen sensing in environmental and biomedical applications, especially tumor hypoxia detection.
Keywords: aggregation-induced emission; electron transfer; hypoxia imaging; iridium(III) complex; oxygen sensing.