Hemodynamic Evaluation of Intra-Aortic Dual-Balloon Pump Based on Fluid-Structure Interaction

Int J Numer Method Biomed Eng. 2025 Jan;41(1):e3899. doi: 10.1002/cnm.3899.

Abstract

The intra-aortic balloon pump (IABP) is a widely-used mechanical circulatory support device that enhances hemodynamics in patients with heart conditions. Although the IABP is a common clinical tool, its effectiveness in enhancing outcomes for patients with acute myocardial infarction and cardiogenic shock remains disputed. This study aimed to assess the effectiveness of intra-aortic dual-balloon pump (IADBP) and its impact on aortic hemodynamics compared with an IABP. Three-dimensional finite element models were constructed for the aorta, IABP, and IADBP, followed by numerical simulation using the fluid-structure coupling (FSI) method. Three simulations were conducted: Heart failure patients without assistive devices (Case A), those with IABP (Case B), and those with IADBP (Case C). The study assessed the IADBP's hemodynamic effects by measuring aortic branch blood flow, left ventricular afterload, aortic wall stress, and wall shear stress. IADBP outperformed IABP in enhancing blood flow to the coronary arteries, upper limbs, and brain vessels (left and right coronary arteries: 0.88 vs. 1.27, 1.27 vs. 1.99 mL/beat; brachiocephalic artery, left common carotid artery, and left subclavian artery: 6.08 vs. 12.39, 2.48 vs. 4.97, 2.31 vs. 5.08 mL/beat). IADBP also demonstrated superior performance in counterpulsation pressure and left ventricular ejection (counterpulsation phase: 97.41 mmHg vs. 110.03 mmHg; ventricular unloading phase: 72.21 mmHg vs. 66.46 mmHg). The use of IADBP elevates stress on the aortic wall and wall shear stress, potentially affecting vascular health. IADBP effectively addresses upper limb and cerebral hypoperfusion issues associated with IABP, demonstrating superior performance in enhancing counterpulsation pressure and left ventricular ejection. Despite potential vascular biomechanical effects, IADBP provide a promising clinical treatment option. Further studies are needed to refine IADBP 's design and evaluate its long-term clinical efficacy.

Keywords: fluid–structure interaction; hemodynamic; intra‐aortic balloon pump; intra‐aortic dual‐balloon pump.

MeSH terms

  • Aorta / physiology
  • Aorta / physiopathology
  • Computer Simulation
  • Finite Element Analysis
  • Heart Failure / physiopathology
  • Heart Failure / therapy
  • Hemodynamics* / physiology
  • Humans
  • Intra-Aortic Balloon Pumping* / instrumentation
  • Models, Cardiovascular