A disorder of calcium homeostasis has been related to the pathogenesis of Cystic Fibrosis (CF). The Authors have studied the relationship between the cytosolic free calcium concentration ([Ca2+]i), the amount of Ca2+ released from endogenous stores and the secretory response in CF neutrophils. Significantly elevated resting [Ca2+]i and depressed Ca2+ release induced by the chemotactic peptide N-formyl-L-methionyl-L-leucyl-L-phenylalanine (FMLP) is present in CF neutrophils. In the absence of exogenous Ca2+ the secretory response of CF neutrophils after a weak stimulus such as Cytochalasin B (CB) is greater than in normal neutrophils, while a depressed secretion of azurophilic granules is evident in CF neutrophils stimulated by CB + FMLP. The data confirm the hypothesis of an altered Ca2+ homeostasis in CF cells. Cystic Fibrosis (CF), an autosomal recessive exocrinopathy, is characterized by secretory abnormalities and ion transport dysfunctions (for review see 1,2). Since intracellular Ca2+ seems to play a role in stimulus-secretion coupling and ion movements, several aspects of Ca2+ homeostasis have been investigated in CF. The total Ca2+ content has been reported to be increased in fibroblast cultures and in lymphocytes (3,4,5) and mitochondrial Ca2+ uptake was found elevated in fibroblast cultures (6). An elevated free cytosolic calcium concentration ([Ca2+]i) has been recently reported in buccal epithelial cells (7), while normal concentration has been found in lymphocytes and Epstein Barr virus transformed lymphoblasts (5,8). The present paper shows the results of a study in human neutrophils, a cell whose several functions such as secretion, movement and respiratory burst are in some way regulated by Ca2+. The data report that in neutrophils of CF patients the resting [Ca2+]i is higher and the secretory response is partly modified.