Developing active-layer systems with both high performance and mechanical robustness is a crucial step towards achieving future commercialization of flexible and stretchable organic solar cells (OSCs). Herein, we design and synthesize a series of acceptors BTA-C6, BTA-E3, BTA-E6, and BTA-E9, featuring the side chains of hexyl, and 3, 6, and 9 carbon-chain with ethyl ester end groups respectively. Benefiting from suitable phase separation and vertical phase distribution, the PM6:BTA-E3-based OSCs processed by o-xylene exhibit lower energy loss and improved charge transport characteristic and achieve a power conversion efficiency of 19.92% (certified 19.57%), which stands as the highest recorded value in binary OSCs processed by green solvents. Moreover, due to the additional hydrogen-bonding provided by ethyl ester side chain, the PM6:BTA-E3-based active-layer systems achieve enhanced stretchability and thermal stability. Our work reveals the significance of dynamic hydrogen-bonding in improving the photovoltaic performance, mechanical robustness, and morphological stability of OSCs.
© 2025. The Author(s).