Population Genomics Reveals Local Adaptation Related to Temperature Variation in Two Stream Frog Species: Implications for Vulnerability to Climate Warming

Mol Ecol. 2025 Jan 17:e17651. doi: 10.1111/mec.17651. Online ahead of print.

Abstract

Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity. Here, we address the question of local adaptation to temperature and the genetic basis of thermal tolerance in two stream frogs (Ascaphus truei and A. montanus). Building on previous physiological and temperature data, we used whole-genome resequencing of tadpoles from four sites spanning temperature gradients in each species to test for signatures of local adaptation. To support these analyses, we developed the first annotated reference genome for A. truei. We then expanded the geographic scope of our analysis using targeted capture at an additional 11 sites per species. We found evidence of local adaptation to temperature based on physiological and genomic data in A. montanus and genomic data in A. truei, suggesting similar levels of sensitivity (i.e., susceptibility) among populations regardless of stream temperature. However, invariant thermal tolerances across temperatures in A. truei suggest that populations occupying warmer streams may be most sensitive. We identified high levels of evolutionary potential in both species based on genomic and physiological data. While further integration of these data is needed to comprehensively evaluate spatial variation in vulnerability, this work illustrates the value of genomics in identifying spatial patterns of climate change vulnerability.

Keywords: Ascaphus; CTmax; amphibian; evolutionary adaptive capacity; landscape genomics; sensitivity.

Associated data

  • RefSeq/GCA_036426205.1