CT-based Machine Learning Radiomics Modeling: Survival Prediction and Mechanism Exploration in Ovarian Cancer Patients

Acad Radiol. 2025 Jan 17:S1076-6332(24)01035-3. doi: 10.1016/j.acra.2024.12.047. Online ahead of print.

Abstract

Rationale and objectives: To create a radiomics model based on computed tomography (CT) to predict overall survival in ovarian cancer patients. To combine Rad-score with genomic data to explore the association between gene expression and Rad-score.

Materials and methods: Imaging and clinical data from 455 patients with ovarian cancer were retrospectively analyzed. Patients were categorized into training cohort, validation cohort and test cohort. Cox regression analysis and the least absolute shrinkage and selection operator (LASSO) methods were utilized to identify characteristics and develop the Rad-score. Radiomics models were developed and evaluated for predictive efficacy and clinical incremental value. Application of genomic data from the cancer genome atlas (TCGA) to reveal differential genes in different Rad-score groups. Screening hub genes and exploring the functions of hub genes through bioinformatics analysis and machine learning.

Results: Prognostic models based on FIGO, tumor residual disease and Rad-score were developed. The receiver operating characteristic (ROC) curves showed that the 1, 3, and 5 year area under curves (AUCs) of the model were in the training group (0.816, 0.865 and 0.862, respectively), validation group (0.845, 0.877, 0.869, respectively) and test group (0.899, 0.906 and 0.869, respectively) had good predictive accuracy. Calibration curves showed good agreement between observations and predictions. Decision curve analysis revealed a high net benefit of the clinical-radiomics model. The clinical impact curve (CIC) showed good clinical applicability of the clinical-radiomics model. Analysis of sequencing data from the TCGA database revealed EMP1 as a hub gene for radiomics modeling. It revealed that its biological function may be associated with extracellular matrix organization and focal adhesion.

Conclusion: Prognostic models based on FIGO, Tumor residual disease, and Rad-score can effectively predict the overall survival (OS) of ovarian cancer patients. Rad-score may enable prognostic prediction of ovarian cancer patients by revealing the expression level of EMP1 and its biological function.

Keywords: Machine learning; Mechanism; Ovarian cancer; Radiomics; Survival.