The impacts of various aging techniques on meat quality and metabolism alterations over time were investigated. Meat tenderness improved with aging, whereas prolonged aging negatively impacted color and oxidative stability. Dry-aging (DA) group exhibited significantly higher (P < 0.05) weight loss, lipid oxidation, and carbonyl contents, along with significantly lower (P < 0.05) centrifugal loss, cooking loss, a* value, and sulfhydryl content compared to wet-aging (WA) group. Substantial amounts of small peptides, amino acids, and amino acid derivatives were detected in the 28 d aged samples. Higher abundances of benzenoids, lipids and lipid-like molecules, amino acids and their derivatives, and alkyl phosphates were found in the WA group, while dialkyl ethers, fatty acids, fatty acid metabolites, and hydroxy acids showed higher intensities in the DA and dry-aging in bag groups. These findings provide comprehensive metabolome information and their underlying relation with meat quality changes during aging under different aging methods.
Keywords: Meat quality; Metabolomics; Oxidative stability; Postmortem aging.
Copyright © 2024. Published by Elsevier Ltd.