Magic mushrooms are fungi that produce psilocybin, an entheogen with long-term cultural use and a breakthrough compound for treatment of mental health disorders. Fungal populations separated by geography are candidates for allopatric speciation, yet species connectivity typically persists because there is minimal divergence at functional parts of mating compatibility genes. We studied whether connectivity is maintained across populations of a widespread species complex of magic mushrooms that has infiltrated the Northern Hemisphere from a hypothesised centre of origin in Australasia. We analysed 89 genomes of magic mushrooms to examine erosion of species connectivity in disparate populations with support from gene flow, kinship, structure, allelic diversity, and mating compatibility. We used comparative genomics and synteny to test whether the genes that produce psilocybin are under selection in natural populations of magic mushrooms. Despite phenotypic plasticity and intercontinental distribution, sexual compatibility is maintained across geographically isolated populations of magic mushrooms. Psilocybin loci have high allelic diversity and evidence of balancing selection. Australasia is the centre of origin of wood-degrading magic mushrooms and geographically separated populations are fully sexually compatible, despite minimal gene flow since differentiation from a shared ancestor. Movement of woodchips, mulch, or plants has most likely facilitated invasion of these mushrooms in the Northern Hemisphere. Citation: McTaggart AR, Scarlett K, Slot JC, Barlow C, Appleyard C, Gardiner DM, Fechner N, Tilden J, Hass D, Voogelbreinder S, Lording WJ, Lloyd RA, Shuey LS, Drenth A, James TY (2024). Wood-loving magic mushrooms from Australia are saprotrophic invaders in the Northern Hemisphere. Fungal Systematics and Evolution 14: 209-217. doi: 10.3114/fuse.2024.14.14.
Keywords: fungal genomics fungal invasion fungal reproduction population genomics psilocybin.
© 2024 Westerdijk Fungal Biodiversity Institute.