Purpose: To assess agreement between CT volumetry change classifications derived from Quantitative Imaging Biomarker Alliance Profile cut-points (ie, QIBA CTvol classifications) and the Response Evaluation Criteria in Solid Tumors (RECIST) categories.
Materials and methods: Target lesions in lung, liver, and lymph nodes were randomly chosen from patients in 10 historical clinical trials for various cancers, ensuring a balanced representation of lesion types, diameter ranges described in the QIBA Profile, and variations in change magnitudes. Three radiologists independently segmented these lesions at baseline and follow-up scans using 2 software tools. Two types of predefined disagreements were assessed: Type I: substantive disagreement, where the disagreement between QIBA CTvol classifications and RECIST categories could not be attributed to the improved sensitivity of volumetry in detecting changes; and Type II: disagreement potentially arising from the improved sensitivity of volumetry in detecting changes. The proportion of lesions with disagreements between QIBA CTvol and RECIST, as well as the type of disagreements, was reported along with 95% CIs, both overall and within subgroups representing various factors.
Results: A total of 2390 measurements from 478 lesions (158 lungs, 170 livers, 150 lymph nodes) in 281 patients were included. QIBA CTvol agreed with RECIST in 66.6% of interpretations. Of the 33.4% of interpretations with discrepancies, substantive disagreement (Type I) occurred in only 1.5% (95% CI: [0.8%, 2.1%]). Factors such as scanner vendor (P = .584), segmentation tool (P = .331), and lesion type (P = .492) were not significant predictors of disagreement. Significantly more disagreements were observed for larger lesions (≥50 mm, as defined in the QIBA Profile).
Conclusion: We conclude that QIBA CTvol classifications agree with RECIST categories.
Keywords: computed tomography; response assessment criteria; tumor volumetry; volumetric response assessment.
© The Author(s) 2025. Published by Oxford University Press on behalf of the Radiological Society of North America.