Background: At high magnetic fields, degraded image quality due to dielectric artifacts and elevated specific absorption rate (SAR) are two technical challenges in fetal MRI.
Purpose: To assess the potential of high dielectric constant (HDC) pad in increasing image quality and decreasing SAR for 3 T fetal MRI.
Study type: Prospective.
Field strength/sequence: 3 T. Balanced steady-state free precession (bSSFP) and single-shot fast spin-echo (SSFSE).
Population: One hundred twenty-eight participants (maternal-age 29.0 ± 3.6, range 20-40; gestational-age 30.3 ± 3.5 weeks, range 22-37 weeks) undertook bSSFP and 40 participants (maternal-age 29.5 ± 3.8, range 19-40; gestational-age 30.4 ± 3.5 weeks, range 23-37 weeks) undertook SSFSE.
Assessment: Patient clinical characteristics were recorded, such as gestational-age, amniotic-fluid-index, abdominal-circumference, body-mass-index, and fetal-presentation. Quantitative Image-quality analysis included signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR). Qualitative analysis was performed by three radiologists with four-point scale to evaluate overall image quality, dielectric artifact, and diagnostic confidence. Whole-body total SAR was obtained from the vendor workstation.
Statistical testing: Paired rank sum test was used to analyze the differences in SNR, CNR, overall image quality, dielectric artifact, diagnostic confidence, and SAR with and without HDC pad. Spearman correlation test was used to detect correlations between image quality variable changes and patient clinical characteristics. P values <0.05 were set as statistical significance.
Results: With HDC pad, SNR and CNR was significantly higher (41.45% increase in SNR, 54.05% increase in CNR on bSSFP; 258.76% increase in SNR, 459.55% increase in CNR on SSFSE). Overall qualitative image quality, dielectric artifact and diagnostic confidence improved significantly. Adding HDC pad significantly reduced Whole-body total SAR (32.60% on bSSFP; 15.40% on SSFSE). There was no significant correlation between image quality variable changes and participant clinical characteristics (P-values ranging from 0.072 to 0.992).
Data conclusion: In the clinical setting, adding a HDC pad might increase image quality while reducing dielectric artifact and SAR.
Plan language summary: Dielectric artifacts and elevated SAR are two technical problems in 3T fetal MRI. In a prospective analysis of 168 pregnant participants undertaking 3.0T fetal MRI scanning, high dielectric constant (HDC) pad increased SNR by 41.45%, CNR by 54.05% on bSSFP, and SNR by 258.76%, CNR by 459.55% on SSFSE. Overall image quality, dielectric artifact reduction, and diagnostic confidence assessed by three radiologists was improved. Whole-body total SAR decreased by 32.60% on bSSFP and by 15.40% on SSFSE. These findings suggested that the HDC pad can enhance fetal MRI safety and quality, making it a promising tool for clinical practice.
Evidence level: 2 TECHNICAL EFFICACY: Stage 5.
Keywords: fetal MRI; high dielectric constant; image quality; specific absorption rate.
© 2025 The Author(s). Journal of Magnetic Resonance Imaging published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.