Revealing the removal behavior of polystyrene nanoplastics and natural organic matter by AlTi-based coagulant from the perspective of functional groups

J Hazard Mater. 2025 Jan 18:487:137258. doi: 10.1016/j.jhazmat.2025.137258. Online ahead of print.

Abstract

The interactions of nanoplastics (NPs) with natural organic matter (NOM) are influenced by their surface functional groups. In this study, the effects of representative functional groups on the interactions among polystyrene nanoplastics (PS-COOH and PS-NH2), hydrophilic low molecular weight (LMW) substances (salicylic acid (SA), phthalic acid (PA), and gluconic acid (GA)), and a novel AlTi-based coagulant were investigated. We found that PS-NH2 (83.02 % - 93.38 %) was easier to remove over a wider pH range than PS-COOH (6.94 % - 91.07 %). PS-COOH and PS-NH2 were both able to interact with SA (-OH, -COO-, and benzene ring) through hydrogen bonding, π-π conjugation, and n-π electron donor-acceptor interactions. However, the binding of PS-COOH/PS-NH2 with SA has no effect on the interaction strength between SA and PATC due to the preferential occupation of the coagulant binding sites by SA. The lower SA removal in the PS-COOH@SA system was attributed to its stronger electrostatic repulsion and hydrophilicity. PATC could form carboxylate outer and C-O inner complexes with SA and carboxylate inner complexes with PA. In this study, the analysis of the interaction mechanisms among metal-based coagulants, NPs, and LMW substances lays a theoretical foundation for further research and understanding of coagulation theory.

Keywords: Coagulation behavior; Combined pollution; Interaction mechanism; Nanoplastics; Surface functional groups.