Achieving optimal capacitive energy storage performance necessitates the integration of high energy storage density, typical of ferroelectric dielectrics, with the low polarization loss associated with linear dielectrics. However, combining these characteristics in a single dielectric material is challenging due to the inherent contradictions between the spontaneous polarization of ferroelectric dielectrics and the adaptability of linear dielectrics to changes in the electric field. To address this issue, a linear isotactic sulfonylated polynorbornene dielectric characterized by ferroelectric-like crystals has been developed. The sulfonyl dipoles in the ferroelectric-like crystals are oriented in the same direction, thereby enabling this polymer to exhibit a considerable dielectric constant (7.5) at room temperature. Notably, when the operating temperature surpasses the polymer's glass transition temperature (Tg ≈ 140 °C), its dielectric constant rises to 12 with just minor changes in the dissipation factor. At 150 °C, 90% efficiency of the discharge energy density reaches as high as 6.76 J cm-1 under a low electric field of 320 MV m-1, which is ten times that of the state-of-the-art, high-temperature, capacitor-grade polyetherimide. The enhancement of high-temperature capacitive performance, achieved by utilizing the crystallinity of isotactic polymers to form a polar structure, presents a new perspective for the design of high-temperature dielectric polymers.
Keywords: dielectric polymer; ferroelectric‐like; high‐temperature capacitive energy storage.
© 2025 Wiley‐VCH GmbH.