The anterior cingulate cortex is responsible for multiple cognitive functions like fear, pain management, decision-making, risk and reward assessment, and memory consolidation. However, its cell-type-specific functions are not clearly understood. To reveal the selective functional role of Parvalbumin-expressing GABAergic interneurons in the ACC, we knocked down (KD) the PV gene in-vivo in rats. Behavioral tests showed significantly improved spatial memory (p = 0.01) in ACC-PV-KD rats compared to control and sham groups, whereas novel object recognition memory was reduced significantly (p = 0.001). The PV knockdown group also showed a longer freezing duration (p = 0.001) and considerably fewer freezing responses (p = 0.005) in the fear conditioning chamber. Additionally, the PV knockdown rats spent significantly (p = 0.006) more time in the periphery and less time in the center of the open field box, indicating anxiety-like behavior. In conclusion, Parvalbumin expressing interneurons in ACC are functionally diverse and critical for regulating fear response, recognition memory and spatial memory. Completely elucidating the underlying mechanism and circuitry will open up therapeutic choices for associated disorders.
Keywords: Anterior cingulate cortex; Fear; Memory; Parvalbumin interneurons.
© 2024 Published by Elsevier Ltd.