Background: Statins, as an important class of lipid-lowering drugs, play a key role in the prevention and treatment of cardiovascular diseases. However, with their widespread use in clinical practice, some adverse events have gradually emerged. In particular, the hepatotoxicity associated with statins use has become one of the clinical concerns that require sufficient attention.
Methods: In this study, we conducted a comprehensive and detailed analysis of the hepatotoxicity of statins based on the data of the US Food and Drug Administration Adverse Event Reporting System database from the first quarter (Q1) of 2004 to the Q1 of 2024 and used Reporting Odds Ratios and Empirical Bayes Geometric Mean to mine the signal of adverse events.
Results: In this study, hepatic disorder related seven statins all exhibited positive signals. Through signal mining, we identified a total of 14,511 cases of adverse events associated with hepatic disorder caused by these statin drugs, with atorvastatin, simvastatin, and rosuvastatin occurring at a higher rate. A total of 148 positive signals related to adverse events of hepatic disorder were captured. Autoimmune hepatitis and drug-induced liver injury both presented positive signals across multiple statin drugs. Notably, atorvastatin had the most significant signal strength in cholestatic pruritus and bilirubin conjugation abnormal. Fluvastatin also showed notable signal strength in autoimmune hepatitis, while simvastatin had a relatively weaker signal strength for hepatic enzyme increased.
Conclusion: This study discovered specific adverse event signal values, revealing potential hepatotoxic risks associated with the use of statin drugs. The results provide an important reference for the safe clinical use of drugs, help to improve the understanding of the safety of statins, and also provide a scientific basis for clinicians to make more accurate and safe decisions when making treatment plans.
Keywords: FAERS; adverse event; hepatic disorder; hepatotoxicity; statin drugs; statins.
Copyright © 2025 Wang, Huang, Li, Deng, Li, Wang, Shi, Zhang, Shi, Wang and Tang.