Porcine deltacoronavirus (PDCoV) is an enteric pathogen that burdens the global pig industry and is a public health concern. The development of effective antiviral therapies is necessary for the prevention and control of PDCoV, yet to date, there are few studies on the therapeutic potential of PDCoV-neutralizing antibodies. Here, we investigate the therapeutic potential of a novel monoclonal antibody (mAb 4A6) which targets the PDCoV S1 protein and effectively neutralizes PDCoV, both pre- and post-attachment on cells, with IC50 values of 0.537 and 8.487 µg/mL, respectively. A phage-display peptide library was used to determine the epitope recognized by mAb 4A6, and two mimotopes, QYPVSYA (P1) and FPHWPTI (P2), were identified. KLH-P1 reacted with PDCoV-positive sera but failed to induce PDCoV-specific IgG and neutralizing antibodies in mice, suggesting P1 does not fully mimic the conformational epitope. Molecular docking and alanine scanning mutagenesis revealed that S461, P462, T463, E465, and Y467 on the S protein are essential for mAb 4A6 binding. Antibody therapy experiments in PDCoV-infected piglets showed that administering mAb 4A6 once or twice could delay the onset of diarrhea symptoms, reduce the severity of diarrhea, and decrease virus shedding. Taken together, our findings demonstrate that mAb 4A6 holds promise as a treatment against PDCoV, and the amino acids recognized by mAb 4A6 will be valuable for developing novel epitope-based vaccines or antiviral drugs.
Importance: Porcine deltacoronavirus (PDCoV) is a novel swine enteropathogenic coronavirus that poses a potential threat to public health. Developing effective antiviral therapies is crucial for its prevention and control. Here, we demonstrated that mAb 4A6 shows promise as a treatment against PDCoV. Antibody therapy experiments conducted on PDCoV-infected piglets revealed that administering mAb 4A6 once or twice could delay the onset of diarrhea symptoms, reduce the severity of diarrhea, and decrease virus shedding. Furthermore, we characterized the conformational epitope (S461, P462, T463, E465, and Y467) recognized by mAb 4A6 through an integrated approach involving phage display peptide library, molecular docking, and alanine scanning mutagenesis. More importantly, mAb 4A6 exhibits a broad-spectrum neutralizing activity against different PDCoV strains. These findings indicate that mAb 4A6 has promising therapeutic value for PDCoV-infected piglets, and the identification of mAb 4A6 recognized epitope may provide a new idea for the identification of conformational epitopes.
Keywords: conformational epitope; neutralizing monoclonal antibody; piglet model; porcine deltacoronavirus; therapy experiments.