Leishmaniasis remains a significant public health challenge, particularly in endemic regions with limited resources. Traditional diagnostic methods, including microscopy, culture, and serology, though widely utilized, often suffer from limitations such as variable sensitivity, time delays, and the need for specialized infrastructure. Some of these limitations have been addressed with the emergence of molecular diagnostic techniques. Quantitative PCR (q-PCR), loop-mediated isothermal amplification (LAMP), and recombinase polymerase amplification (RPA) assays have improved the diagnostic sensitivity and specificity, enabling species identification and detection of asymptomatic infections. Further, nanodiagnostics and portable sequencing technologies such as the MinION™, along with lab-on-chip platforms, are revolutionizing the diagnostic landscape of leishmaniasis by offering point-of-care (POC) options for remote settings and field-based diagnosis. This review provides an in-depth analysis of these cutting-edge advances, discusses their application in resource-constrained settings, and evaluates their potential to reshape the future of leishmaniasis diagnosis and management.
© 2025. The Author(s), under exclusive licence to Springer Nature Switzerland AG.