Practice not only improves task performance but also changes task execution from rule- to memory-based processing by incorporating experiences from practice. However, how and when this change occurs is unclear. We test the hypothesis that strategy transitions in task learning can result from decision-making guided by cost-benefit analysis. Participants learn 2 task sequences and are then queried about the task type at a cued sequence and position. Behavioral improvement with practice can be accounted for by a computational model implementing cost-benefit analysis and the model-predicted strategy transition points align with the observed behavioral slowing. Model comparisons using behavioral data show that strategy transitions are better explained by a cost-benefit analysis across alternative strategies rather than solely on memory strength. Model-guided fMRI findings suggest that the brain encodes a decision variable reflecting the cost-benefit analysis and that different strategy representations are double-dissociated. Further analyses reveal that strategy transitions are associated with activation patterns in the dorsolateral prefrontal cortex and increased pattern separation in the ventromedial prefrontal cortex. Together, these findings support cost-benefit analysis as a mechanism of practice-induced strategy shift.
Copyright: © 2025 Yang, Jiang. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.