Long-chain chlorinated paraffins (LCCPs) exposure causes senescence and inflammatory damage in cardiomyocytes

J Environ Manage. 2025 Jan 22:375:124166. doi: 10.1016/j.jenvman.2025.124166. Online ahead of print.

Abstract

Humans can be exposed to LCCPs through air and diet, leading to their accumulation in the body. Given the significance of understanding potential health risks, a thorough investigation into the detrimental health impacts of LCCPs is paramount. In this study, we conducted a series of experiments to investigate the effects of LCCPs on cardiomyocytes, employing techniques such as flow cytometry, western-blot, indirect immunofluorescence, and confocal microscopy. We initially observed that LCCPs caused senescence damage to cardiomyocytes. Under the stimulation of LCCPs, the number of SA-β-Gal positive cardiomyocytes increased, along with an elevation in the protein expression levels of cellular senescence markers (p21, p16). The cell cycle was arrested in the S phase. Subsequently, we observed that LCCPs also induced an increase in ROS and inflammatory cytokines (IL-6, IL-8, TNF-α), as well as a decrease in MMP in cardiomyocytes. Mechanistic studies revealed that LCCPs activated the innate immune response pathway-cGAS-STING pathway, and the cellular senescence damage caused by LCCPs was alleviated upon the addition of a cGAS-STING inhibitor. In conclusion, our findings suggest that LCCPs can induce aging damage in cardiomyocytes by activating the cGAS-STING signaling pathway. This study indicates that LCCPs possesses potential cardiotoxicity and offers necessary experimental data for their rational and regulated utilization.

Keywords: Cardiomyocytes; Inflammatory response; LCCPs; Senescence.