Effect of operational parameters on droplet deposition characteristics using an unmanned aerial vehicle for banana canopy

Front Plant Sci. 2025 Jan 9:15:1491397. doi: 10.3389/fpls.2024.1491397. eCollection 2024.

Abstract

In recent years, as an important part of precision agricultural aviation, the plant protection unmanned aerial vehicle (UAV) has been widely studied and applied worldwide, especially in East Asia. Banana, as a typical large broad-leaved crop, has high requirements for pests and diseases control. The mechanization degree of plant protection management in banana orchard is low. Therefore, our study focuses on the effects of different flight heights (3-5 m) and droplet sizes (50-150 μm) of plant protection UAV on the droplet deposition distribution characteristics of banana canopy. And the droplet deposition distribution in banana canopy and spraying drift of plant protection UAV and ground air-assisted sprayer were compared. The results showed that droplet size was the main factor affecting droplet deposition density, coverage, uniformity and penetration on both sides of banana canopy leaves. The droplet deposition density and coverage on the adaxial side of leaves were mostly significantly larger than that on the abaxial side. The flight height of 4 m and the droplet size of 100 μm could make the adaxial side of banana canopy leaves have higher droplet deposition density (63.77 droplets per square cm) and coverage (12.75%), and can make the droplets effectively deposit on the abaxial side of banana canopy leaves, with droplet deposition density of 17.46 droplets per square cm and coverage of 1.24%. Choosing an appropriate flight height and a droplet size could improve the droplet deposition uniformity on both sides of banana canopy leaves, but the improvement was not significant. Moreover, at a same operational parameter combination, it was difficult to achieve the best droplet deposition density, coverage, uniformity and penetration at the same time. In addition, appropriately increasing the flight height and droplet size could help to improve the droplet deposition penetration on the adaxial side of banana canopy leaves, but there were few significant improvements. Compared with the plant protection UAV, the ground air-assisted sprayer had higher droplet deposition density and coverage on the abaxial side of banana canopy leaves, but had smaller droplet deposition coverage on the adaxial side. The droplet deposition density and coverage on the abaxial side of banana canopy leaves were obviously larger than the adaxial side during the spraying of ground air-assisted sprayer. The droplet drift distance of the ground air-assisted sprayer was farther than the plant protection UAV. The test results of this study can provide practical and data support for the UAV aerial application in banana orchard, and provide a valuable reference for the implementation of air-ground cooperation spraying strategy in banana orchard, which is of great significance to promote sustainable and intelligent phytoprotection of banana orchard.

Keywords: aerial application; banana; droplet deposition; operational parameters; unmanned aerial vehicle.