Fully automated coronary artery calcium score and risk categorization from chest CT using deep learning and multiorgan segmentation: A validation study from National Lung Screening Trial (NLST)

Int J Cardiol Heart Vasc. 2025 Jan 2:56:101593. doi: 10.1016/j.ijcha.2024.101593. eCollection 2025 Feb.

Abstract

Background: The National Lung Screening Trial (NLST) has shown that screening with low dose CT in high-risk population was associated with reduction in lung cancer mortality. These patients are also at high risk of coronary artery disease, and we used deep learning model to automatically detect, quantify and perform risk categorisation of coronary artery calcification score (CACS) from non-ECG gated Chest CT scans.

Materials and methods: Automated calcium quantification was performed using a neural network based on Mask regions with convolutional neural networks (R-CNN) for multiorgan segmentation. Manual evaluation of calcium was carried out using proprietary software. This study used 80 patients to train the segmentation model and randomly selected 1442 patients were used for the validation of the algorithm. We compared the model generated results with Ground Truth.

Results: Automatic cardiac and aortic segmentation model worked well (Mean Dice score: 0.91). Cohen's kappa coefficient between the reference actual and the interclass computed predictive categories on the test set is 0.72 (95 % CI: 0.61-0.83). Our method correctly classifies the risk group in 78.8 % of the cases and classifies the subjects in the same group. F-score is measured as 0.78; 0.71; 0.81; 0.82; 0.92 in calcium score categories 0(CS:0), I (1-99), II (100-400), III (400-1000), IV (>1000), respectively. 79 % of the predictive scores lie in the same categories, 20 % of the predictive scores are one category up or down, and only 1.2 % patients were more than one category off. For the presence/absence of coronary artery calcifications, our deep learning model achieved a sensitivity of 90 % and a specificity of 94 %.

Conclusion: Fully automated model shows good correlation compared with reference standards. Automating the process could improve diagnostic ability, risk categorization, facilitate primary prevention intervention, improve morbidity and mortality, and decrease healthcare costs.

Keywords: Artificial Intelligence; Chest CT; Coronary artery calcium score; Coronary artery disease; Risk categorization.