With the intensification of climate change coupled with the inadequate agricultural management in certain regions, plants face numerous challenges due to various abiotic stresses. Stress associated proteins (SAPs) are essential functional genes in plants for coping with stress. This research provides a functional analysis of OsSAP17, a protein belonging to the SAP family in rice. The expression level of OsSAP17 was induced under drought, salt stress and ABA treatment. Subcellular localization analysis revealed that the OsSAP17 protein was distributed in both the cytoplasm and nucleus. The ectopic expression of OsSAP17 significantly increased the capacity to withstand drought and salt stress in both transgenic yeast and Arabidopsis. Additionally, the ectopic expression of OsSAP17 led to notable changes in the expression of Arabidopsis ABA-related genes, including AtNCED3, AtABA2, and AtSnRK2.2. These results indicated that OsSAP17 was able to positively regulate drought and salt tolerance in plants. The insights from this study provided a fundamental understanding of the role of OsSAP17 in abiotic stress response mechanisms and were potentially valuable for breeding crops with enhanced stress tolerance.
Keywords: ABA signaling; Drought stress; Heterologous expression; OsSAP17; Salt stress.
Copyright © 2024 Elsevier Masson SAS. All rights reserved.