Remaining Useful Life Prediction of Rolling Bearings Based on CBAM-CNN-LSTM

Sensors (Basel). 2025 Jan 19;25(2):554. doi: 10.3390/s25020554.

Abstract

Predicting the Remaining Useful Life (RUL) is vital for ensuring the reliability and safety of equipment and components. This study introduces a novel method for predicting RUL that utilizes the Convolutional Block Attention Module (CBAM) to address the problem that Convolutional Neural Networks (CNNs) do not effectively leverage data channel features and spatial features in residual life prediction. Firstly, Fast Fourier Transform (FFT) is applied to convert the data into the frequency domain. The resulting frequency domain data is then used as input to the convolutional neural network for feature extraction; Then, the weights of channel features and spatial features are assigned to the extracted features by CBAM, and the weighted features are then input into the Long Short-Term Memory (LSTM) network to learn temporal features. Finally, the effectiveness of the proposed model is verified using the PHM2012 bearing dataset. Compared to several existing RUL prediction methods, the mean squared error, mean absolute error, and root mean squared error of the proposed method in this paper are reduced by 53%, 16.87%, and 31.68%, respectively, which verifies the superiority of the method. Meanwhile, the experimental results demonstrate that the proposed method achieves good RUL prediction accuracy across various failure modes.

Keywords: Convolutional Block Attention Module; convolutional neural network; deep learning; remaining service life prediction; rolling bearing.