Study on the Improvement Effect of Polypropylene Fiber on the Mechanical Properties and Freeze-Thaw Degradation Performance of High Fly Ash Content Alkali-Activated Fly Ash Slag Concrete

Polymers (Basel). 2025 Jan 13;17(2):175. doi: 10.3390/polym17020175.

Abstract

This article systematically investigated the improvement effect of polypropylene fiber (PPF) on the mechanical and freeze-thaw properties of alkali-activated fly ash slag concrete (AAFSC) with high fly ash content and cured at room temperature. Fly ash and slag were used as precursors, with fly ash accounting for 80% of the total mass. A mixed solution of sodium hydroxide and sodium silicate was used as alkali activator, and short-cut PPF was added to improve the performance of AAFSC. Firstly, the strength characteristics of AAFSC at different curing ages were studied. Then, key indicators such as morphology, residual compressive strength, weight loss, relative dynamic modulus of elasticity (RDME), and pore characteristics of AAFSC after different freeze-thaw cycles were tested and analyzed. The strength performance analysis showed that the optimal dosage of PPF was 0.90%. When the alkali equivalent of the alkali activator was increased from 4% to 6%, the frost resistance of AAFSC could be improved. Furthermore, adding 0.90% PPF could increase the freeze-thaw cycle number of AAFSC by about 50 times (measured by RDME). With the increase in freeze-thaw cycles, the porosity of AAFSC increased, the fractal dimension decreased, and the proportion of harmless and less harmful pores decreased, while the proportion of harmful and multiple harmful pores increased. The relationship model between the porosity and compressive strength of AAFSC after freeze-thaw cycles was established.

Keywords: alkali-activated fly ash slag concrete; freeze–thaw degradation; high fly ash content; polypropylene fiber; room temperature preparation.