We have previously reported that chromatin preparations from human cultured fibroblasts contain a single homologous serum protein. In this paper we present evidence, based on immunological identity and physicochemical properties, that this serum protein is fibronectin. Furthermore, using a radioimmunoassay system, we have estimated that fibronectin represents about 0.7% of the total protein in both chromatin preparations and whole fibroblasts. Using a nitrocellulose filter assay system, we also show that fibronectin is a DNA-binding protein having an equilibrium constant of 4.6 x 10(-6) M. Equilibrium competition experiments have demonstrated that fibronectin has the ability to differentiate among nucleotides, indicating that fibronectin-DNA interaction is at least partially specific, and that a minimum polymer length of 12-18 nucleotides is required for effective binding to occur. Fibronectin has been isolated readily from plasma using DNA-affinity chromatography. We do not have direct evidence that fibronectin is an actual nonhistone chromosomal protein, but fibronectin is a DNA-binding protein (at least under in vitro assay conditions) and appears to be a normal constituent of chromatin as chromatin is currently isolated from cell nuclei.