The influence of methotrexate pretreatment on 5-fluorouracil metabolism in L1210 cells

J Biol Chem. 1981 Feb 25;256(4):1695-704.

Abstract

Pretreatment of L1210 cells with methotrexate in concentrations which produced free intracellular methotrexate and near maximal inhibition of dihydrofolate reductase resulted in an enhancement of intracellular 5-fluorouracil (FUra) accumulation. This enhancement of FUra accumulation was maximum (5-fold increase) after a 6-h exposure to 100 microM methotrexate. The nucleotide derivatives of FUra, including a 5-fluoro-2'-deoxyuridylate, and 5-fluorouridine-5'-triphosphate were also increased nearly 5-fold following methotrexate treatment. In cells pretreated with methotrexate, there was an increase in intracellular 5-phosphoribosyl-1-pyrophosphate pools which ranged from 2 to 8 times control values following concentrations of methotrexate between 0.1 microM and 10 microM. Both the increase in 5-phosphoribosyl-1-pyrophosphate and FUra accumulation could be prevented by the addition of Leucovorin (N5-formyltetrahydrofolate) at concentrations which rescued cells from the inhibitory effects of methotrexate. Pretreatment with 6-methylmercaptopurine riboside, which inhibits amidophosphoribosyltransferase, the first committed step in de novo purine synthesis, also resulted in a similar elevation in 5-phosphoribosyl-1-pyrophosphate pools and enhancement of FUra accumulation. If the 5-phosphoribosyl-1-pyrophosphate pools were reduced following methotrexate pretreatment by the addition to the cultures of hypoxanthine, which utilizes 5-phosphoribosyl-1-pyrophosphate for the conversion to IMP, the intracellular accumulation of FUra was not enhanced. Also, if the inhibitor of 5-phosphoribosyl-1-pyrophosphate synthetase, 7-deazaadenosine, was given to cultures with methotrexate, there was no increase in 5-phosphoribosyl-1-pyrophosphate pools, nor enhancement of FUra accumulation. In addition, when 5-fluoro-2'-deoxyuridine was added with the methotrexate to cell cultures, there was no increase in 5-phosphoribosyl-1-pyrophosphate pools, nor enhancement of intracellular FUra accumulation. These results indicate that the ability of methotrexate to enhance FUra accumulation was probably the consequence of the antipurine effect of methotrexate which resulted in a reduction of the complex feedback inhibition on 5-phosphoribosyl-1-pyrophosphate synthesis and utilization. The resultant increased 5-phosphoribosyl-1-pyrophosphate pools were then capable of being utilized for the conversion of FUra to 5-fluorouridylate, the possible rate-limiting step in FUra intracellular metabolism and the major determinant of the rate of intracellular FUra accumulation. When methotrexate preceded FUra, there was synergistic cell killing as determined by soft agar cloning. The exact mechanism of this sequential synergistic antitumor activity may be the result of the enhanced incorporation of FUra into RNA, since the increased 5-fluoro-2'-deoxyuridylate which is formed is unlikely to increase substantially the inhibition of dTMP synthesis induced by methotrexate pretreatment.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Biological Transport / drug effects
  • Deoxyuridine / metabolism
  • Fluorouracil / metabolism*
  • Kinetics
  • Leucovorin / pharmacology
  • Leukemia L1210 / metabolism*
  • Methotrexate / pharmacology*
  • Mice
  • Phosphoribosyl Pyrophosphate / metabolism
  • Purines / biosynthesis
  • RNA, Neoplasm / biosynthesis

Substances

  • Purines
  • RNA, Neoplasm
  • Phosphoribosyl Pyrophosphate
  • Leucovorin
  • Fluorouracil
  • Deoxyuridine
  • Methotrexate