The metabolism of halothane by hepatocytes: a comparison between free radical spin trapping and lipid peroxidation in relation to cell damage

Chem Biol Interact. 1983 Sep 15;46(3):353-68. doi: 10.1016/0009-2797(83)90019-4.

Abstract

The technique of free radical spin trapping has been applied to demonstrate the formation of free radicals produced during the metabolism of halothane by rat liver hepatocytes under hypoxic conditions. The results obtained support previous findings that reported sex differences in the metabolic activation of halothane by rats in vivo. Cell viability under hypoxic conditions, as judged by trypan blue staining and lactate dehydrogenase release, shows a correlation with the extent of metabolism of halothane as measured by electron spin resonance spectroscopy. The extent of lipid peroxidation was measured by diene conjugation, malondialdehyde production and chemiluminescence. The latter technique allowed the demonstration of lipid peroxidation during incubations of hepatocytes under aerobic conditions. The magnitude of the aerobic chemiluminescence showed a similar sex dependency to the extent of free radical formation under hypoxic conditions. Cell viability measurements show that halothane metabolism in both hypoxic and aerobic conditions can lead to cell death. Consequently, oxidative lipid damage could be a cause of cell damage, as judged by cell viability, additional to covalent binding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Survival / drug effects
  • Electron Spin Resonance Spectroscopy
  • Female
  • Free Radicals
  • Halothane / metabolism*
  • Lipid Peroxides / metabolism*
  • Liver / cytology*
  • Liver / metabolism
  • Luminescent Measurements
  • Male
  • Malondialdehyde / biosynthesis
  • Microsomes, Liver / metabolism
  • Rats

Substances

  • Free Radicals
  • Lipid Peroxides
  • Malondialdehyde
  • Halothane