Deoxycholate-extracted rat liver gap junction was studied by high-resolution low-dose electron microscopy. Communicating channels between two adjoining cells supposedly form along the common axis of two apposed hexameric trans-membrane protein assemblies. These double hexamers are often arranged in large plaques on an ordered hexagonal net (8-9 nm lattice constant) and seem able to undergo structural alteration as a possible permeability control mechanism. Calcium is widely reported to uncouple gap junction, and we observed this alteration on exposure to Ca++ down to 10(-4) M concentration. When EGTA was added at matching concentrations, the alteration was reversible several times over one hour, but with considerable variability. It was imaged in the absence of any negative stain to avoid ionic and other complications. The resulting lack of contrast plus low-dose "shot" noise required digital Fourier filtering and reconstruction, but no detail was recovered below 1.8 nm. In other experiments with negative stain at neutral pH, gap junction connexons were apparently locked in the "closed" configuration and no transition could be induced. However, recovery of repeating detail to nearly 1.0 nm was possible, reproducibly showing a fine connective matrix between connexons . Whether this was formed by unfolded portions of the 28,000-dalton gap junction protein is not known, but its existence could explain the observed lattice invariance during the connexon structural transition.