Augmentation of spontaneous macrophage-mediated cytolysis by eosinophil peroxidase

J Exp Med. 1982 May 1;155(5):1291-308. doi: 10.1084/jem.155.5.1291.

Abstract

Eosinophil peroxidase (EPO), a cationic protein purified from horse blood, adhered to four different types of tumor cells, markedly potentiating their lysis by preformed or enzymatically generated H(2)0(2) (up to 76-fold, as assayed in serum-containing tissue culture medium without supplemental halide). Similarly, compared with uncoated tumor cells, EPO-coated tumor cells were up to 32 times more sensitive to lysis when incubated with macrophages or granulocytes whose respiratory burst was triggered by PMA. However, EPO-coated tumor cells were also readily lysed by bacillus Calmette- Guerin-activated macrophages in the absence of exogenous triggering agents. This spontaneous cytolysis was rapid (50 percent at 2 h) and potent (50 percent lysis at macrophage/tumor cell ratios of 1.5 to 4.6), and was observed with both a peroxide-sensitive tumor (TLX9) and a peroxide-resistant tumor (NK lymphoma). Under the conditions used, neither EPO alone nor macrophages alone were spontaneously cytolytic. Neither EPO nor EPO-coated tumor cells triggered a detectable increment in H(2)0(2) release from macrophages. Nonetheless, spontaneous macrophage-mediated cytolysis of EPO- coated tumor cells was completely inhibitable by catalase (50 percent inhibition, 23 U/ml), although not by heated catalase, indicating a requirement for H(2)0(2). Cytolysis was also completely inhibitable by azide (50 percent inhibition, 2.6 X 10 -5 M), indicating a requirement for enzymatic activity of EPO. Thus, a cytophilic peroxidase from eosinophils and H(2)0(2) spontaneously released from activated macrophages interacted synergistically in a physiologic medium to destroy tumor cells.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Bromides / pharmacology
  • Chlorides / pharmacology
  • Cytotoxicity, Immunologic / drug effects*
  • Eosinophil Peroxidase
  • Eosinophils / enzymology*
  • Female
  • Horses
  • Hydrogen Peroxide / pharmacology
  • Iodides / pharmacology
  • Lymphoma / immunology
  • Macrophage Activation
  • Macrophages / metabolism*
  • Mast-Cell Sarcoma / immunology
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, Inbred DBA
  • Peroxidases / pharmacology*
  • Tetradecanoylphorbol Acetate / pharmacology
  • Time Factors

Substances

  • Bromides
  • Chlorides
  • Iodides
  • Hydrogen Peroxide
  • Eosinophil Peroxidase
  • Peroxidases
  • Tetradecanoylphorbol Acetate