The lyophilized, squalene-treated Nocardia rubra cell wall skeleton (N-CWS) was confirmed to produce tumoricidal peritoneal macrophages resulting in inhibition of tumor growth when injected locally into the syngeneic ascites fibrosarcoma, AMC 60 in ACI/N rats. Furthermore, N-CWS was found to augment therapeutic effect when administered repeatedly after a single local injection of mitomycin-C (MMC). To analyze the effects, various in vitro cytolysis assays were performed using N-CWS-activated peritoneal macrophages. When tumor target cells were exposed in vitro to MMC, the resulting cytolysis in the presence of N-CWS-activated macrophages was similar to cytolysis of intact target cells. On the other hand, when N-CWS-activated macrophages were exposed to MMC, the tumoricidal activity was lost significantly, depending on exposure to MMC. When tumor target cells and N-CWS-activated macrophages were simultaneously exposed to MMC, tumor-cell cytolysis was strikingly depressed. In the final experiment, combined injection of MMC and N-CWS into the ascites tumor resulted in remarkable increases not only in peritoneal exudate cell number, but also in in vitro tumoricidal activity of peritoneal macrophages as compared to those induced by either agent alone. In addition, the production of tumoricidal macrophages by IP injection of MMC alone was also noticeable, as described previously. These results possibly indicate the involvement of macrophage activation in induction of therapeutic effect in chemoimmunotherapy.