[The effect of lacquer coatings on indoor air quality using as example radiator lacquers]

Schriftenr Ver Wasser Boden Lufthyg. 1982:53:283-98.
[Article in German]

Abstract

Examination of the air of a redecorated office room revealed the lacquer used to paint the radiators as one of the possible reasons for complaints by persons working in that room. The dry lacquer was found to contain solvent residues and considerable amounts of aldehydes (from propanol to n-nonanal), in particular of n-hexanal. In model studies, the details of aldehyde formation have been elucidated. An electric radiator was painted twice with special radiator lacquer, allowed to dry for 3 days and placed into a 1 m3 glass cube. The cube was continuously purged with clean air, simulating air exchange rates of 0.6 and 0.15 per hour. During the experiment, air samples were taken at intervals of several days and analyzed by gas chromatography. The temperature of the radiator was varied between 40 and 60 degrees C. In addition to the different aldehydes which appeared in the air of the cube each at concentrations of up to the mg/m3 range, remarkable concentrations of the corresponding carboxylic acids were found. In analogy to the aldehyde series with a predominance of n-hexanal, there was a maximum concentration of 50 mg/m3 of n-hexanoic acid in the air of the cube. Taking as an example n-butyric acid, which has an odour threshold value of appr. 4 micrograms/m3, the values measured in the cube were used to calculate the corresponding indoor air concentration in a room of 50 m3 with an air exchange rate of 0.6 per hour. It was found that even after a 4-weeks operation of such a radiator, the odour threshold value was surpassed by a factor of 3. By using other types of lacquers (e.g. water-soluble lacquers), the occurrence of such aldehydes and carboxylic acids in indoor air can be largely prevented.

Publication types

  • English Abstract

MeSH terms

  • Air Pollutants / analysis*
  • Aldehydes / analysis
  • Carbonic Acid / analysis
  • Chromatography, Gas
  • Heating*
  • Paint / adverse effects*
  • Paint / analysis

Substances

  • Air Pollutants
  • Aldehydes
  • Carbonic Acid