Inhibitory effect of nitric oxide on the replication of a murine retrovirus in vitro and in vivo

J Virol. 1995 Nov;69(11):7001-5. doi: 10.1128/JVI.69.11.7001-7005.1995.

Abstract

Nitric oxide (NO) exerts microbicidal effects on a broad spectrum of pathogens, including viruses, but its antiretrovirus properties have not yet been described. The purpose of this study was to determine whether NO inhibits murine Friend leukemia virus (FV) replication in vitro and to what extent NO may play a role in defenses against FV infection in mice. Three NO-generating compounds were studied: 3-morpholino-sydononimine (SIN-1), sodium nitroprusside (SNP), and S-nitroso-N-acetylpenicillamine (SNAP). The effects of these three compounds were compared with those of their controls (SIN-1C, potassium ferricyanide, and N-acetylpenicillamine, respectively), which do not generate NO and with that of sodium nitrite (NaNO2). SIN-1, SNP, and SNAP inhibited FV replication in dunni cells in a concentration-dependent manner. In contrast, no significant inhibitory effect was observed with the three controls or NaNO2. Furthermore, the addition of superoxide dismutase did not alter the inhibitory effect of SIN-1, which is also known to generate superoxide anions. No dunni cell toxicity was observed in the range of concentrations tested. We also assessed the effect of NO produced by activated macrophages on FV replication. Macrophages activated by gamma interferon and lipopolysaccharide inhibited FV replication in a concentration-dependent manner. This inhibition was due in part to NO production, since it was reversed by NG-monomethyl L-arginine, a competitive inhibitor of NO synthase. In vivo administration of NG-nitro-L-arginine methyl ester, a competitive inhibitor of NO synthase, significantly increased the viral load in spleen cells of FV-infected mice. These results suggested that NO may play a role in defenses against the murine Friend leukemia retrovirus.

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Antiviral Agents / pharmacology*
  • Arginine / analogs & derivatives
  • Arginine / pharmacology
  • Cell Line
  • Dose-Response Relationship, Drug
  • Enzyme Inhibitors / pharmacology
  • Fibroblasts
  • Friend murine leukemia virus / drug effects
  • Friend murine leukemia virus / physiology*
  • Kinetics
  • Lipopolysaccharides / pharmacology
  • Macrophages, Peritoneal / drug effects
  • Macrophages, Peritoneal / physiology
  • Macrophages, Peritoneal / virology
  • Male
  • Mice
  • Mice, Inbred DBA
  • Molsidomine / analogs & derivatives*
  • Molsidomine / pharmacology
  • NG-Nitroarginine Methyl Ester
  • Nitric Oxide / antagonists & inhibitors
  • Nitric Oxide / biosynthesis
  • Nitric Oxide / pharmacology*
  • Nitric Oxide Synthase / antagonists & inhibitors
  • Nitroarginine
  • Nitroprusside / pharmacology*
  • Penicillamine / analogs & derivatives*
  • Penicillamine / pharmacology
  • S-Nitroso-N-Acetylpenicillamine
  • Sodium Nitrite / pharmacology
  • Virus Replication / drug effects*

Substances

  • Antiviral Agents
  • Enzyme Inhibitors
  • Lipopolysaccharides
  • Nitroprusside
  • Nitroarginine
  • Nitric Oxide
  • linsidomine
  • S-Nitroso-N-Acetylpenicillamine
  • Arginine
  • Molsidomine
  • Nitric Oxide Synthase
  • Penicillamine
  • Sodium Nitrite
  • NG-Nitroarginine Methyl Ester