Plasma membranes purified from onion roots contain two distinct NAD(P)H-dehydrogenases of 27 and 31 kDa that differ in their physicochemical properties, substrate specificities and inhibitors sensitivities. The 27-kDa enzyme used both NADH and NADPH as electron donors. The 31-kDa enzyme was fully specific for NADH and accounted for the bulk of NADH-ferricyanide oxidoreductase. We have used NADPH- and NADH-ferricyanide oxidoreductase activities as markers for investigating the orientation of the 27- and 31-kDa enzymes at the plasma membrane, respectively. These activities were assayed in right-side-out vesicles isolated by two-phase partition, inside-out vesicles obtained by treatment with the detergent Brij 58 and membranes permeabilized with Triton X-100. Upon addition of Brij 58 to right-side-out plasma membrane vesicles, both NADPH- and NADH-ferricyanide oxidoreductases were activated to the same degree as the plasma membrane H(+)-ATPase. Redox activities were similar when measured in the presence of either Brij 58 or Triton X-100. Our results demonstrate that both enzymes expose their catalytic sites toward the cytoplasmic side of the plasma membrane.