Anti-B4-blocked ricin (anti-B4-bR) is an immunotoxin directed against CD19-positive cells that is currently being tested in several B-cell leukemia/lymphoma clinical trials. To explore the possibility of using anti-B4-bR in combination with chemotherapy protocols, we investigated the in vitro and in vivo cytotoxic effects of combining it with doxorubicin or etoposide using the lymphoma cell line Namalwa and a P-glycoprotein-expressing cell line, Namalwa/mdr-1, obtained by retroviral infection of Namalwa cells with the mdr-1 gene. Namalwa/mdr-1 cells were slightly more sensitive to anti-B4-bR than Namalwa cells; IC37 values were approximately 4 pmol/L and 8 pmol/L, respectively. When anti-B4-bR was combined simultaneously with doxorubicin or etoposide, additive to supra-additive killing of Namalwa and Namalwa/mdr-1 cells was observed. In xenografts of Namalwa/mdr-1 cells in severe combined immunodeficiency (SCID) mice, doxorubicin and etoposide at their maximum tolerated doses (3 mg/kg x 3 or 15 mg/kg x 3) showed no therapeutic effect. However, treatment with 5 daily bolus injections of anti-B4-bR (50 micrograms/kg) followed by treatment with doxorubicin or etoposide significantly increased the life span of the mice by 129% and 115%, respectively. After treatment with anti-B4-bR, the Namalwa/mdr-1 population expressed lower levels of P-glycoprotein, and this decrease may account for the synergistic action of the drug combinations. These results suggest that anti-B4-bR could be used to good effect in combination with current treatment regimens and further hint at a promising role for this immunotoxin in treatment of disease at the minimal residual disease stage, where cells may be resistant to chemotherapy.