We investigated the intranuclear distribution of PML and Sp100 in HeLa cells at the ultrastructural level and examined their relocalization in response to herpes simplex virus type 1 (HSV-1) infection. In the absence of infection, we observed that both are components, not only of nuclear bodies, but also of interchromatin granule-associated zones, which suggests a potential role for PML and Sp100 in splicing events. Prolonged HSV-1 infection induced dramatic changes in nuclear organization which consisted of the morphological disappearance of some nuclear structures (nuclear bodies, interchromatin granule-associated zones, coiled bodies) and of the development of a centrally located electron-translucent viral region which pushed the cellular clusters of interchromatin granules to the nuclear border. Concomitantly, dense bodies, concentric arrays of reduplicated inner nuclear membrane, and translucent patches containing a few viral capsids occurred at the nuclear border. PML and Sp100 were exclusively detected over the finely granular material of the viral translucent patches which also contains small amounts of p80-coilin and U1 and U2 snRNAs. An antiserum raised against capsid proteins intensely labeled the viral translucent patches at the level of their finely granular material and enclosed viral capsids. Our data, therefore, suggest that these viral structures, in addition to being the site of accumulation of viral capsid proteins and, possibly, a capsidworks, are also a site of sequestration of cell factors including PML and Sp100. Viral capsid proteins could interfere with and inactivate PML and Sp100 and be implicated in the shutoff of host cell metabolism induced by HSV-1 infection.