Altered membrane polarity has been proposed as an important pathogenetic factor in the development of renal cysts in polycystic kidney disease. To determine whether this alteration in epithelial phenotype is a primary or secondary phenomenon, we examined the epithelial membrane polarity of SBM transgenic mice, in which epithelial proliferation mediated by the c-myc oncogene is an established primary event. Kidneys from 32 transgenic mice and 10 age-matched controls from fetal to adult age were immunostained with antibodies to Na,K-ATPase, fodrin, ankyrin, E-cadherin, and tubule segment-specific lectins. In normal control mice, Na,K-ATPase localization was apical in fetal kidneys but became translocated to the basolateral membrane at maturity. Early microcysts in fetal transgenic kidneys displayed similar (95 to 100%) apical Na,K-ATPase. In young and newborn transgenic mice (1 to 8 days of age), Na,K-ATPase localization was extremely heterogeneous. Noncystic tubules demonstrated either apical (mean 23 to 28%), basolateral (mean 48 to 58%), mixed (mean 4 to 15%), or absent (mean 10 to 13%) staining for Na,K-ATPase. Apical Na,K-ATPase was more frequently observed in early cysts (mean 55%) in young transgenic mice but became less prevalent in adult mice (mean 22%), where 30% of cysts had basolateral staining, 39% mixed patterns, and 9% absent staining. Macrocysts typically lost all Na,K-ATPase reactivity. At all ages, Na,K-ATPase colocalized well with cytoskeletal proteins ankyrin and fodrin. These heterogeneous patterns of Na,K-ATPase staining indicate that although altered cell polarity is frequent in early cystic epithelium of SBM mice, it is not a prerequisite to cystogenesis or progressive cyst enlargement. In conclusion, our results support the view that altered cystic membrane polarity is not a primary process, but represents the persistence of an immature epithelial phenotype characteristic of proliferative polycystic kidney disease epithelia.