It has been demonstrated that Ras is involved in interleukin 3 (IL-3)-stimulated signal transduction in various hematopoietic cultured cells (Satoh, T., Nakafuku, M., Miyajima, A., and Kaziro, Y. (1991) Proc. Natl. Acad. Sci. U.S.A. 88, 3314-3318; Duronio, V., Welham, M. J., Abraham, S., Dryden, P., and Schrader, J. W. (1992) Proc. Natl. Acad. Sci. U.S.A. 89, 1587-1591). However, it has not been fully understood which of IL-3-promoted cellular responses, i.e. proliferation, survival, and differentiation, requires Ras function. We employed a system of inducible expression of the dominant-negative (S17N) or dominant-active (G12V) mutant of Ras in BaF3 mouse pro-B cell line to analyze the role of Ras in IL-3-stimulated signal transduction. Induction of the dominant-negative Ras(S17N) effectively inhibited the IL-3-induced activation of c-Raf-1 and mitogen-activated protein kinase (MAPK). Furthermore, the activation of fos gene promoter following IL-3 stimulation was almost completely abolished when Ras(S17N) was induced. Under these conditions, Ras(S17N) exhibited no inhibitory effect on IL-3-dependent proliferation assessed by the increase of cell numbers and a mitochondrial enzyme activity. The results indicate that Ras-dependent pathways, including the Raf/MAPK/Fos pathway, are dispensable for IL-3-induced growth stimulation. When BaF3 cells were treated with a tyrosine kinase inhibitor, herbimycin A, IL-3-dependent proliferation of the cells was impaired, suggesting that tyrosine kinase-mediated pathways are critical for growth promotion. On the other hand, apoptotic cell death caused by deprivation of IL-3 was prevented by the induction of the activated mutant Ras(G12V), although the rate of cell number increase was markedly reduced. Thus, it is likely that Ras-independent pathways play important roles to facilitate the proliferation although they may not be essential for IL-3-stimulated antiapoptotic signal transduction.