Gap junctions are thought to mediate the direct intercellular coupling of adjacent cells by the gating of an aqueous pore permeable to ions and molecules of up to 1 kD or 8 to 14 A in diameter. We performed ion-substitution and dye-transfer experiments to determine the relative Cl-/K+ conductance and dye permeability of anionic fluorescein derivatives in chick connexin45 (Cx45) channels. We demonstrate that Cx45 forms a 26 +/- 6-picosiemen (pS) channel with a maximum detectable Cl- permeability of 0.2 relative to K+ or Cs+. Although homogeneous channel conductances were observed in multichannel recordings, the open probability estimates were indicative of nonhomogeneous gating behavior and occasional cooperativity. A second conductance state of 19 +/- 4 pS begins to predominate at higher voltages. Cx45 gap junctions are permeable to 2',7'-dichlorofluorescein but are not permeable to the more polar 6-carboxyfluorescein dye. These observations suggest that the Cx45 pore diameter is approximately 10 A and is associated with a fixed negative charge within the junctional channel.