The natural killer cell (NK)-specific p58 surface molecules, recognized by the GL183 and EB6 monoclonal antibodies (mAb), have been shown to represent the putative NK receptor for HLA-C molecules. The interaction between p58 receptors and HLA-C results in inhibition of the NK-mediated target cell lysis. In this study, GL183-EB6+ clones (Cw4-specific), after mAb-induced surface modulation of EB6 molecules, acquired the ability to lyse the Cw4+ C1R cells. In NK clones co-expressing both GL183 and EB6 molecules and unable to kill Cw3-protected target cells, the mAb-induced modulation of EB6 molecules resulted both in selective co-modulation of GL183 molecules and in the lysis of Cw3-transfected P815 murine cells. In line with the co-modulation experiments we also show that the GL183 and EB6 molecules can be co-immunoprecipitated from GL183+/EB6+ clones after cell lysis in the presence of digitonin. The p58 receptor also revealed an association with molecules belonging to the zeta family (i.e. CD3 zeta and Fc epsilon RI gamma chains). Two-dimensional diagonal gel analysis of the p58 complex immunoprecipitated from polyclonally activated p58+ NK cells indicated a preferential association with CD3 zeta chains either in the form of covalently linked zeta-zeta homodimers or in the form of zeta-gamma heterodimers, while gamma-gamma homodimers were detectable in low amounts. However, p58+ clones displaying a unique association with gamma-gamma homodimers could also be isolated. Probing the immunoprecipitated p58 complex with anti-p56lck antibody also revealed an association with this member of the src family. In addition, mAb-mediated signaling of NK clones via p58 molecules induced increments of p58/p56lck association. However, under the same experimental conditions that induced optimal in vivo tyrosine phosphorylation of the CD16-associated CD3 zeta chains, no tyrosine phosphorylation was detected in the p58-associated CD3 zeta chains. In these in vivo experiments neither anti-CD16 nor anti-p58 mAb could induce tyrosine phosphorylation of the gamma chains. Finally, the anti-p58-mediated inhibition of the NK cell triggering via CD16 molecules was not accompanied by a down-regulation of the tyrosine phosphorylation of the CD16-associated CD3 zeta chains.