Separation of 32P-postlabeled DNA adducts of polycyclic aromatic hydrocarbons and nitrated polycyclic aromatic hydrocarbons by HPLC

Chem Res Toxicol. 1994 Jul-Aug;7(4):503-10. doi: 10.1021/tx00040a005.

Abstract

The 32P-postlabeling assay, thin-layer chromatography, and reverse-phase high-pressure liquid chromatography (HPLC) were used to separate DNA adducts formed from 10 polycyclic aromatic hydrocarbons (PAHs) and 6 nitrated polycyclic aromatic hydrocarbons (NO2-PAHs). The PAHs included benzo[j]fluoranthene, benzo[k]fluoranthene, indeno[1,2,3-cd]pyrene, benzo[a]pyrene, chrysene, 6-methylchrysene, 5-methylchrysene, and benz[a]anthracene. The NO2-PAHs included 1-nitropyrene, 2-nitrofluoranthene, 3-nitrofluoranthene, 1,6-dinitropyrene, 1,3-dinitropyrene, and 1,8-dinitropyrene. Separation of seven of the major PAH-DNA adducts was achieved by an initial PAH HPLC gradient system. The major NO2-PAH-DNA adducts were not all separated from each other using the initial PAH HPLC gradient but were clearly separated from the PAH-DNA adducts. A second NO2-PAH HPLC gradient system was developed to separate NO2-PAH-DNA adducts following one-dimensional TLC and HPLC analysis. HPLC profiles of NO2-PAH-DNA adducts were compared using both adduct enhancement versions of the 32P-postlabeling assay to evaluate the use of this technique on HPLC to screen for the presence of NO2-PAH-DNA adducts. To demonstrate the application of these separation methods to a complex mixture of DNA adducts, the chromatographic mobilities of the 32P-postlabeled DNA adduct standards (PAHs and NO2-PAHs) were compared with those produced by a complex mixture of polycyclic organic matter (POM) extracted from diesel emission particles. The diesel-derived adducts did not elute with the identical retention time of any of the PAH or NO2-PAH standards used in this study. HPLC analyses of the NO2-PAH-derived adducts (butanol extracted) revealed the presence of multiple DNA adducts.(ABSTRACT TRUNCATED AT 250 WORDS)

Publication types

  • Comparative Study

MeSH terms

  • Animals
  • Cattle
  • Chromatography, High Pressure Liquid*
  • Chromatography, Thin Layer
  • DNA Adducts / analysis*
  • DNA Adducts / metabolism
  • Liver / metabolism
  • Mice
  • Nitro Compounds / analysis*
  • Nitro Compounds / metabolism
  • Polycyclic Compounds / analysis*
  • Polycyclic Compounds / metabolism
  • Rats
  • Thymus Gland / metabolism
  • Vehicle Emissions / analysis

Substances

  • DNA Adducts
  • Nitro Compounds
  • Polycyclic Compounds
  • Vehicle Emissions