Interactions between hematopoietic cells and bone marrow (BM) stroma, composed of extracellular matrix and stromal cells, are crucial for hematopoiesis. Integrins facilitate these interactions by mediating adherence of hematopoiesis. Integrins facilitate these interactions by mediating adherence of hematopoietic cells to both the extracellular matrix and stromal cells. Marrow stromal cells secrete a variety of growth factors, including stem cell factor (SCF). Because treatment with SCF in vivo mobilizes primitive hematopoietic cells from the BM, we investigated the effect of the growth factor SCF of hematopoietic cell adhesion. These studies show that SCF modulates adhesive function in a dose- and time-dependent manner, but does not modulate expression of the integrins alpha 4 beta 1 and alpha 5 beta 1 in the SCF-responsive cell line MO7E. Treatment of MO7E cells with SCF (200 ng/mL) produced a transient increase in adherence to cytokine-activated human umbilical vein endothelial cells (HUVECs) or to vascular cell adhesion molecule 1 (VCAM-1)-transfected Chinese hamster ovary (CHO) cells with peak adhesion at 30 minutes and return to baseline by 60 to 90 minutes. This increase in adhesion was paralleled by increased binding of the beta 1 activation-dependent monoclonal antibody (MoAb) 15/7, as determined by flow cytometry. However, prolonged incubation of MO7E with SCF induced a marked decrease in integrin-mediated adherence, with maximal inhibition by 24 hours. No change in expression of integrins, as determined by flow cytometry, was observed with short- or long-term incubation with SCF. SCF-treated cells were still able to respond to phorbol esters and to the activating beta 1 MoAb 8A2 with increased adherence, but not to the level seen in control cells. This suggests that a subpopulation of expressed alpha 4 beta 1 and alpha 5 beta 1 integrins is disengaged by prolonged incubation with SCF.