We have used in situ hybridization and reverse transcriptase polymerase chain reaction (PCR) to study the origins of the extracellular matrix glycoprotein tenascin during the development of the central and peripheral nervous systems. Previous studies have shown that neural crest cells migrate along pathways that are lined with tenascin. In situ hybridization, PCR, and western blotting reveal that these cells themselves are a major source of tenascin both in vitro and in the embryo. Thus, tenascin is probably not acting as a guidance molecule but is more likely to be promoting neural crest cell motility in a more general way. Similarly, subpopulations of proliferating and migrating glia make tenascin in the developing central nervous system, as do the radial glia that are used as a substratum for migrating neuronal cell bodies. In the adult, tenascin continues to be expressed in the cerebellum by Golgi epithelial cells. This expression, as well as the expression of tenascin in connective tissue, indicates that this molecule may also be playing a role in regulating differentiation. Finally, the distribution of tenascin transcripts in the developing brain and spinal cord is similar to the distribution of mRNAs encoding receptors for platelet-derived growth factor-AA and basic fibroblast growth factor. In vitro studies indicate that both of these factors are potential regulators of tenascin expression.